Add like
Add dislike
Add to saved papers

Magnetic solid-phase extraction based on carbon nanosphere@Fe 3 O 4 for enantioselective determination of eight triazole fungicides in water samples.

Electrophoresis 2019 Februrary 7
In this work, a carbon nanosphere decorated by Fe3 O4 nanoparticles was prepared, characterized and used as the magnetic adsorbent. Eight commonly used chiral triazole fungicides, including penconazole, uniconazole, paclobutrazol, triazolone, tebuconazole, hexaconazole, triticonazole and epoxiconazole were extracted from two environmental water samples (river water and lake water) by magnetic solid-phase extraction, followed by the enantiomeric analysis on a Chiralpark IC column coupled with a triple quadrupole mass spectrometry to evaluate their possible stereoselective degradation occurring in the water samples. The possible factors affecting the extraction performance, such as amount of used adsorbents, pH and ionic strength of water solution, types and volumes of desorption solvents were systematically investigated. Under the optimum conditions, extraction yields of eight triazole fungicides were above 80% and the concentration factors were as high as 1000. Method detection and quantification limits for the enantiomers of eight triazole fungicides were in the range of 0.56-6.95 ng/L. Satisfactory accuracy (relative recovery 77.8-93.5%), good intra-day precision (RSD 4.3-9.8%) and inter-day precision (RSD 3.1-7.9%) were also obtained. The developed method provided the simplicity of operation, rapidity and high enrichment factor, which can be used to monitor and evaluate the behavior of the individual enantiomer of chiral triazole fungicides. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app