Add like
Add dislike
Add to saved papers

Nondestructive determination of freshness indicators for tilapia fillets stored at various temperatures by hyperspectral imaging coupled with RBF neural networks.

Food Chemistry 2019 March 2
This study develops a reliable radial basis function neural networks (RBFNNs) to estimate freshness for tilapia fillets stored under non-isothermal conditions by using optimal wavelengths from hyperspectral imaging (HSI). The results show that, for tilapia fillet stored at -3, 0, 4, 10, and 15 °C and non-isothermal conditions, total volatile basic nitrogen (TVB-N), total aerobic counts (TAC), and the K value increase whereas sensory scores decrease with increasing storage time. To simplify the models, nine optimal wavelengths were selected by using the successive projections algorithm (SPA), following which SPA-RBFNN models were built based on the selected wavelengths and the values of TVB-N, TAC, K, and sensory evaluations for tilapia fillets store isothermally. The ability of the models based on HSI to predict the freshness indicators were verified for tilapia fillets stored under non-isothermal conditions. HSI thus has an excellent potential for nondestructive determination of freshness in tilapia fillets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app