Add like
Add dislike
Add to saved papers

Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion.

Food Chemistry 2019 March 2
The physiological efficacy of nutraceuticals is dependent on their physicochemical nature and bioavailability across biological barriers. In the present work, effects of nano-sizing of emulsion-based delivery vehicle on the bioavailability of polyunsaturated fatty acids rich fish oil have been investigated via three-step experimental design; ex vivo rat everted intestinal sac model, cellular lipid uptake and the bioactivity in rat PBMCs. Nanoemulsion in comparison to the conventional emulsion has shown significant higher rate of uptake of polyunsaturated fatty acids in three segments of small intestine. The time-kinetics of such uptake was correlated with appearance of short-chain fatty acids in basal side of the everted sac. The bioavailability of the formulated fish oil and its inhibitory response against lipopolysaccharide-induced nitric oxide production in rat PBMCs were positively correlated. This formulation with nano-sized droplets can be utilized as smart delivery vehicles for designing oral therapies in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app