Add like
Add dislike
Add to saved papers

Insight into Excitation Dependent Fluorescence of Carbon Dots.

High quantum yield, photoluminescence tunability, and sensitivity to the environment are the few distinct trademarks that make carbon nanodots (CDs) interesting for fundamental research with potential to replace the prevalent inorganic semiconductor quantum dots. Currently, application and fundamental understanding of CDs are constrained because it is difficult to make a quantitative comparison among different types of CDs simply because their PL properties are directly linked to their size distribution, the surface functionalization, the carbon core structures (graphitic or amorphous) and the number of defects. Herein, we report a facile one-step synthesis of mono-dispersed and highly fluorescent nanometre size CDs from a 'family' of glucose-based sugars. These CDs are stable in aqueous solutions with photoluminescence in the visible range. Our results show several common features in the family of CDs synthesized in that the fluorescence, in the visible region, is due to a weak absorption in the 300-400nm from a heterogeneous population of fluorophores. Fluorescence quenching experiments suggest the existence of not only surface-exposed fluorophores but more importantly solvent inaccessible fluorophores present within the core of CDs. Interestingly, time-resolved fluorescence anisotropy experiments directly suggest that a fast exchange of excitation energy occurs that results in a homo-FRET based depolarization within 150ps of excitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app