Add like
Add dislike
Add to saved papers

Anticancer effects of anti-CD47 immunotherapy in vivo .

The treatment of breast cancer largely depends on the utilization of immunogenic chemotherapeutics, which, as a common leitmotif, stimulate the exposure of calreticulin (CALR) on the surface of cancer cells, thereby facilitating their recognition by dendritic cells for the uptake of tumor-associated antigens and subsequent antigen cross-presentation to cytotoxic T cells. Breast cancer cells also express the calreticulin antagonist CD47, which inhibits tumor cell phagocytosis and consequently subverts anticancer immune responses. Here, we treated carcinogen-induced or transplantable mouse models of cancer by a CD47 blocking antibody that was at least as efficient as chemotherapy and that could be favorably combined with the anthracycline mitoxantrone in the context of carcinogen-induced orthotopic breast cancers. Monotherapy by CD47 blockade led to a reduction in tumor growth and an increase in overall survival. Of note, this treatment lead to a moderate depletion of M2 macrophages as well as close-to-complete elimination of regulatory T cells from the tumor bed, suggesting a strong favorable impact of CD47 blockade on the tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app