Add like
Add dislike
Add to saved papers

Mathematical Modeling for Pharmaco-Kinetic and -Dynamic Predictions from Controlled Drug Release NanoSystems: A Comparative Parametric Study.

Predicting pharmacokinetics, based on the theory of dynamic systems, for an administered drug (whether intravenously, orally, intramuscularly, etc.), is an industrial and clinical challenge. Often, mathematical modeling of pharmacokinetics is preformed using only a measured concentration time profile of a drug administered in plasma and/or in blood. Yet, in dynamic systems, mathematical modeling (linear) uses both a mathematically described drug administration and a mathematically described body response to the administered drug. In the present work, we compare several mathematical models well known in the literature for simulating controlled drug release kinetics using available experimental data sets obtained in real systems with different drugs and nanosized carriers. We employed the χ 2 minimization method and concluded that the Korsmeyer-Peppas model (or power-law model) provides the best fit, in all cases (the minimum value of χ 2 per degree of freedom; χ min 2 /d.o.f. = 1.4183, with 2 free parameters or m  = 2). Hence, (i) better understanding of the exact mass transport mechanisms involved in drugs release and (ii) quantitative prediction of drugs release can be computed and simulated. We anticipate that this work will help devise optimal pharmacokinetic and dynamic release systems, with measured variable properties, at nanoscale, characterized to target specific diseases and conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app