Add like
Add dislike
Add to saved papers

Role of Krüppel-Like Factor 4-p21CIP1 Axis in Breast Cancer Stem-Like Cell Inhibition by Benzyl Isothiocyanate.

Cancer chemoprevention by benzyl isothiocyanate (BITC), which is derived from cruciferous vegetables like garden cress, in a transgenic mouse model of breast cancer is associated with inhibition of breast cancer stem-like cells (bCSC) but the molecular regulators of this effect remain elusive. This study demonstrates a protective effect of Krüppel-like factor 4 (KLF4)-p21CIP1 axis in bCSC inhibition by BITC. Exposure of human breast cancer cells (MCF-7, MDA-MB-231, and SUM159) to plasma achievable concentrations of BITC resulted in a robust induction of KLF4 mRNA and its protein expression as determined by quantitative real-time polymerase chain reaction and western blotting or confocal microscopy. BITC-mediated suppression of bCSC markers, including aldehyde dehydrogenase 1 activity and mammosphere frequency, was significantly augmented by transient or stable knockdown of KLF4. Western blotting and immunohistochemistry revealed relatively higher levels of KLF4 protein in mammary tumor sections from BITC-treated mice in comparison with controls but the difference was insignificant. Analysis of the breast cancer RNA-Seq data from The Cancer Genome Atlas indicated significant positive correlation between expression of KLF4 and that of p21CIP1 (CDKN1A) but not β-Catenin (CTNNB1). Knockdown of p21CIP1 protein also amplified BITC-mediated suppression of bCSC. Finally, KLF4 was recruited to the promoter of p21CIP1 as indicated by chromatin immunoprecipitation assay. These results indicate that induction of KLF4-p21CIP1 axis attenuates inhibitory effect of BITC on bCSC self-renewal. Translational implication of these findings is that breast cancer chemoprevention by BITC may be augmented with a combination regimen involving BITC and an inhibitor of KLF4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app