Add like
Add dislike
Add to saved papers

Ascl2 facilitates IL-10 production in Th17 cells to restrain their pathogenicity in inflammatory bowel disease.

Inflammatory bowel disease (IBD) has been well-documented as a chronic gastrointestinal autoimmune disease, but its etiology remains to be elusive. Ascl2 (achaete-scute complex homologue 2), identified as a homologue of the Drosophila achaete-scute gene, has been shown to play an essential for the pathogenesis of autoimmune diseases and cancers. However, whether it is associated with the pathogenesis of IBD remains unclear. Here, we demonstrated that Ascl2 was greatly down-regulated in human IBD and experimental colitis. Interestingly, CD4+ T cell expression of Ascl2 was regulated by intestinal microbiota. Moreover, we revealed that Ascl2 inhibited the differentiation of Th17 cells and restrained their pathogenicity through facilitating IL-10 production. We further showed that Blimp-1 might be involved in the Ascl2-inducing IL-10 expression in CD4+ T cells under Th17 differentiating condition. Notably, lentivirus-mediated overexpression of Ascl2 remarkably alleviated the severity of 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis in mice, with decreased level of colonic IL-17A. Our findings demonstrated an unappreciated mechanism whereby Ascl2 negatively modulates pathogenic Th17 cell differentiation via promoting IL-10 production, and alleviates intestinal inflammation. Thus, Ascl2 may serve as a novel therapeutic target of IBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app