Add like
Add dislike
Add to saved papers

Phosphoinositol metabolism affects AMP kinase-dependent K-ATP currents in rat substantia nigra dopamine neurons.

Brain Research 2019 March 2
We reported recently that ligand-gated ATP-sensitive K+ (K-ATP) current is potentiated by AMP-activated protein kinase (AMPK) in rat substantia nigra compacta (SNC) dopamine neurons. Because phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) regulates K-ATP current, we explored the hypothesis that changes in PI(4,5)P2 modify the ability of AMPK to augment K-ATP current. To influence PI(4,5)P2 levels, we superfused brain slices with phospholipase C (PLC) activators and inhibitors while recording whole-cell currents in SNC dopamine neurons. Diazoxide, superfused for 5 min every 20 min, evoked K-ATP currents that, on average, increased from 38 pA at first application to 122 pA at the fourth application, a 220% increase. This enhancement of diazoxide-induced current was AMPK dependent because K-ATP current remained at baseline when slices were superfused with either the AMPK inhibitor dorsomorphin or the upstream kinase inhibitor STO-609. The PLC inhibitor U73122 significantly increased diazoxide current over control values, and this increase was blocked by dorsomorphin. Enhancement of diazoxide-induced current was also completely prevented by the PLC activator m-3M3FBS. Agonists at 5-HT2C and group I metabotropic glutamate receptors, both of which activate PLC, also prevented augmentation of diazoxide-induced current. Finally, inhibition of spike discharges by diazoxide was significantly antagonized by m-3M3FBS. These results suggest that PLC activity significantly influences the inhibitory effect of K-ATP channels by altering PI(4,5)P2 content. Results also suggest that modification of K-ATP current by PLC requires AMPK activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app