Add like
Add dislike
Add to saved papers

Plantarflexor fiber and tendon slack length are strong determinates of simulated single-leg heel raise height.

Journal of Biomechanics 2019 January 30
Achilles tendon ruptures have been linked with detrimental changes in muscle-tendon structure, which may help explain long-term functional deficits. However, the causal effects of muscle-tendon structure on joint function have not been tested in a controlled setting. Therefore, the purpose of this study was to test the implications of muscle-tendon unit parameters on simulated single-leg heel raise height. We hypothesized that muscle fiber length and resting ankle angle - a clinical surrogate measure of tendon slack length - would predict single-leg heel raise height more strongly than other parameters. To test this hypothesis, we developed a two-part simulation paradigm that recreated clinically relevant muscle-tendon scenarios and then tested these parameters on single-leg heel raise height. We found that longer muscle fibers had the greatest positive effect on single-leg heel raise height. However, tendon slack length, determined by simulating resting ankle angles in a secondary analysis, revealed a stronger negative correlation with heel raise height. Our findings support previous clinical observations that both muscle fascicle length and resting tendon length are important muscle-tendon parameters for patient function. In addition to minimizing tendon elongation following rupture, treatment plans should focus on preserving plantarflexor muscle structure to mitigate functional loses following Achilles tendon ruptures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app