Add like
Add dislike
Add to saved papers

Effects of graft copolymer of chitosan and salicylic acid on reducing rot of postharvest fruit and retarding cell wall degradation in grapefruit during storage.

Food Chemistry 2019 June 16
This study was to evaluate the effect of graft copolymer (CTS-g-SA) of chitosan (CTS) and salicylic acid (SA) on the storability of grapefruit fruits during postharvest storage. Results indicate that the graft copolymer treatment significantly depressed green mold caused by Penicillium digitatum. The graft copolymer application kept fruit firmness without impairing the fruit quality. Moreover, the graft copolymer treatment inhibited the activity and gene expression of cell wall-modifying enzymes such as polygalacturonase, cellulase, pectin methylesterase, α-l-arabinofuranosidase, β-galactosidase, and suppressed the modification of cell wall components including covalently bound polysaccharide (sodium carbonate soluble pectin, 24% KOH-soluble fraction), which were associated with fruit softening. These results suggested that graft copolymer application can be recognized as a postharvest technique to suppress rotting and delay softening through inhibiting solubilization of cell wall polysaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app