Add like
Add dislike
Add to saved papers

Cortical Zeta-Inhibitory Peptide Injection Reduces Local Sleep Need.

Sleep 2019 Februrary 6
Local sleep need within cortical circuits exhibits extensive interregional variability and appears to increase following learning during preceding waking. Although the biological mechanisms responsible for generating sleep need are unclear, this local variability could arise as a consequence of wake-dependent synaptic plasticity. To test whether cortical synaptic strength is a proximate driver of sleep homeostasis we developed a novel experimental approach to alter local sleep need. One hour prior to light onset, we injected zeta-inhibitory peptide (ZIP), a pharmacological antagonist of protein kinase Mζ, which can produce pronounced synaptic depotentiation, into the right motor cortex of freely-behaving rats. As compared to saline control, ZIP selectively reduced slow wave activity (SWA; the best electrophysiological marker of sleep need) within the injected motor cortex without affecting SWA in a distal cortical site. This local reduction in SWA was associated with a significant reduction in the slope and amplitude of individual slow waves. Local ZIP injection did not significantly alter the amount of time spent in each behavioral state, locomotor activity, or EEG/LFP power during waking or REM sleep. Thus, local ZIP injection selectively produced a local reduction in sleep need; synaptic strength, therefore, may play a causal role in generating local homeostatic sleep need within the cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app