Add like
Add dislike
Add to saved papers

Respiratory sympathetic modulation is augmented in chronic kidney disease.

Respiratory modulation of sympathetic nerve activity (respSNA) was studied in a hypertensive rodent model of chronic kidney disease (CKD) using Lewis Polycystic Kidney (LPK) rats and Lewis controls. In adult animals under in vivo anaesthetised conditions (n = 8-10/strain), respiratory modulation of splanchnic and renal nerve activity was compared under control conditions, and during peripheral (hypoxia), and central, chemoreceptor (hypercapnia) challenge. RespSNA was increased in the LPK vs. Lewis (area under curve (AUC) splanchnic and renal: 8.7 ± 1.1 vs. 3.5 ± 0.5 and 10.6 ± 1.1 vs. 7.1 ± 0.2 µV.s, respectively, P < 0.05). Hypoxia and hypercapnia increased respSNA in both strains but the magnitude of the response was greater in LPK, particularly in response to hypoxia. In juvenile animals studied using a working heart brainstem preparation (n = 7-10/strain), increased respSNA was evident in the LPK (thoracic SNA, AUC: 0.86 ± 0.1 vs. 0.42 ± 0.1 µV.s, P < 0.05), and activation of peripheral chemoreceptors (NaCN) again drove a larger increase in respSNA in the LPK with no difference in the response to hypercapnia. Amplified respSNA occurs in CKD and may contribute to the development of hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app