Add like
Add dislike
Add to saved papers

Orexin A modulates prolactin production by regulating BMP-4 activity in rat pituitary lactotorope cells.

Peptides 2019 Februrary 3
The impact of orexins on anterior pituitary function has yet to be clarified. We studied the effects of orexin A and its interaction with the bone morphogenetic protein (BMP) system on the regulatory role of prolactin synthesis using rat lactotrope GH3 cells expressing BMP-4. Orexin type 1 receptor (OX1R), but not type 2 receptor (OX2R), was predominantly expressed in GH3 cells. Orexin A suppressed forskolin-induced, but not basal, prolactin mRNA expression without reducing cAMP levels. Of note, orexin A suppressed BMP-4-induced prolactin mRNA and cAMP synthesis. Impairment of the effects of orexin by chemical inhibitors suggested involvement of the P38 pathway in the OX1R activity that suppresses BMP-4-induced PRL expression. Given that inhibition of BMP-receptor signaling reduced prolactin mRNA levels, endogenous BMP action is likely to be linked to the activation of prolactin synthesis by GH3 cells. Orexin A was revealed to suppress Smad1/5/9 phosphorylation and Id-1 transcription induced by BMP-4, which was restored in the presence of orexin-receptor antagonists, suggesting that the inhibitory effect of orexin A occurred via OX1R. Orexin A also reduced ALK-3 expression but increased inhibitory Smad6/7 expression, while BMP-4 treatment downregulated OX1R expression. These results indicated that orexin A plays an inhibitory role in prolactin production through suppression of endogenous BMP activity in GH3 cells, suggesting that a new functional role of the interaction between orexin and BMP-4 is modulation of prolactin levels in lactotrope cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app