Add like
Add dislike
Add to saved papers

Functional equivalency in human somatic cell nuclear transfer - derived endothelial cells.

Stem Cells 2019 Februrary 6
The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in utilizing such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4 derived EC (hNT-ESC-EC) transplantation in hindlimb ischemic mice rescued the hindlimb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. SIGNIFICANCE STATEMENT: Despite recent advancements toward increasing the efficacy of hNT-ESC derivation, the differentiation potential and therapeutic benefits have not been thoroughly investigated. This study demonstrates the cellular function of differentiated hNT-ESCs in an ischemic mice model in comparison to that of IVF-ESCs derived from the embryo of a donor. The derived hNT-ESC-ECs were isolated by sorting for CD31+ expressing cells which exhibited signature endothelial characteristics in vitro such as tubule formation and ac-LDL uptake. While the hNT-ESC-ECs possessed angiogenic potential, its impact on restoring blood perfusion to an ischemic limb was slightly lower than hESC-EC transplantation. © AlphaMed Press 2019.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app