Add like
Add dislike
Add to saved papers

Activation of SIRT1 by L-serine increases fatty acid oxidation and reverses insulin resistance in C2C12 myotubes (L-serine activates SIRT1 in C2C12 myotubes).

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, and the function is linked to cellular metabolism including mitochondrial biogenesis. Hepatic L-serine concentration is decreased significantly in fatty liver disease. We reported that the supplementation of the amino acid ameliorated the alcoholic fatty liver by enhancing L-serine-dependent homocysteine metabolism. In this study, we hypothesized that the metabolic production of NAD+ from L-serine and thus activation of SIRT1 contribute to the action of L-serine. To this end, we evaluated the effects of L-serine on SIRT1 activity and mitochondria biogenesis in C2C12 myotubes. L-Serine increased intracellular NAD+ content and led to the activation of SIRT1 as determined by p53 luciferase assay and western blot analysis of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) acetylation. L-Serine treatment increased the expression of the genes associated with mitochondrial biogenesis and enhanced mitochondrial mass and function. In addition, L-serine reversed cellular insulin resistance determined by insulin-induced phosphorylation of Akt and GLUT4 expression and membrane translocation. L-Serine-induced mitochondrial gene expression, fatty acid oxidation, and insulin sensitization were mediated by enhanced SIRT1 activity, which was verified by selective SIRT1 inhibitor (Ex-527) and siRNA directed to SIRT1. L-Serine effect on cellular NAD+ level is dependent on the L-serine metabolism to pyruvate that is subsequently converted to lactate by lactate dehydrogenase. In summary, these data suggest that L-serine increases cellular NAD+ level and thus SIRT1 activity in C2C12 myotubes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app