Add like
Add dislike
Add to saved papers

Study of the responses and calibration procedures of neutron and gamma area and environmental detectors for use in proton therapy.

Ambient dose equivalent measurements with radiation protection instruments are associated to large uncertainties, mostly due to the energy dependence of the instrument response and to the dissimilarity between the spectra of the standard calibration source and the workplace field. The purpose of this work is to evaluate its impact on the performance of area and environmental detectors in the proton therapy environment, and to provide practical solutions whenever needed and possible. The study was carried out at the Centre Antoine Lacassagne (CAL) proton therapy site, and included a number of commercially available area detectors and a home-made environmental thermoluminescent dosimeter based on a polyethylene moderator loaded with TLD600H/TLD700H pairs. Monte Carlo simulations were performed with MCNP to calculate, first, missing or partially lacking instrument responses, covering the range of energies involved in proton therapy. Second, neutron and gamma spectra were computed at selected positions in and outside the CAL proton therapy bunkers. Appropriate correction factors were then derived for each detector, workplace location and calibration radionuclide source, which amounts to up to 1.9 and 1.5 for neutron and photon area detectors, respectively, and suggest that common ambient dose equivalent instruments might not meet IEC requirements. The TLD environmental system was calibrated in situ and appropriate correction factors were applied to account for the cosmic spectra. Measurements performed with this system from 2014 to 2017 around the installation were consistent with reference natural background dose data and with pre-operational levels registered at the site before the construction of the building in 1988, showing thus no contribution from the site clinical activities. An in situ verification procedure for the radiation protection instruments was also implemented in 2016 at the low energy treatment room using the QA beam reference conditions. The method presents main methodological, practical and economic advantages over external verifications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app