Add like
Add dislike
Add to saved papers

Cerebrospinal fluid levels of synaptic and neuronal integrity correlate with gray matter volume and amyloid load in the precuneus of cognitively intact older adults.

Journal of Neurochemistry 2019 Februrary 6
The main pathophysiological alterations of Alzheimer's disease (AD) include loss of neuronal and synaptic integrity, amyloidogenic processing and neuroinflammation. Similar alterations can, however, also be observed in cognitively intact older subjects and may prelude the clinical manifestation of AD. The objectives of this prospective cross-sectional study in a cohort of 38 cognitively intact older adults were twofold: (i) to investigate the latent relationship among cerebrospinal fluid (CSF) biomarkers reflecting the main pathophysiological processes of AD, and (ii) to assess the correlation between these biomarkers and gray matter volume as well as amyloid load. All subjects underwent extensive neuropsychological examinations, CSF sampling, [18 F]-flutemetamol amyloid positron emission tomography (PET) and T1 -weighted magnetic resonance imaging (MRI). A factor analysis revealed one factor that explained most of the variance in the CSF biomarker dataset clustering t-tau, α-synuclein, p-tau181 , neurogranin, BACE1, VILIP-1, YKL-40, Aβ1-40 and Aβ1-38 . Higher scores on this factor correlated with lower gray matter volume and with higher amyloid load in the precuneus. At the level of individual CSF biomarkers, levels of VILIP-1, neurogranin, BACE1, Aβ1-40 , Aβ1-38 and YKL-40 all correlated inversely with gray matter volume of the precuneus. These findings demonstrate that in cognitively intact older subjects, CSF levels of synaptic and neuronal integrity biomarkers, amyloidogenic processing and measures of innate immunity (YKL-40) display a latent structure of common variance, which is associated with loss of structural integrity of brain regions implicated in the earliest stages of AD. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app