Add like
Add dislike
Add to saved papers

Influence of MiR-154 on myocardial apoptosis in rats with acute myocardial infarction through Wnt/β-catenin signaling pathway.

OBJECTIVE: To explore the influence of micro ribonucleic acid (miR)-154 on myocardial apoptosis in rats with acute myocardial infarction (AMI), and to analyze whether Wnt/β-catenin signaling pathway was involved in the regulation.

MATERIALS AND METHODS: The Sprague-Dawley (SD) rat model of AMI was established via ligation of left anterior descending artery. Rats were randomly divided into model group (M group, n=12) and ICG-001 intervention group (I group, n=12). At the same time, sham operation group (S group, n=12) was established. In I group, ICG-001 (5 mg/kg) was intraperitoneally injected every day after operation. Meanwhile, an equal amount of normal saline was injected in rats of S group and M group. 21 d after operation, the cardiac function of rats in each group was detected via echocardiography. After that, the rats were immediately executed. MI area in each group was detected via 2,3,5-triphenyltetrazolium chloride (TTC) staining. Myocardial apoptosis level in each group was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Moreover, the changes of apoptotic proteins in rat myocardial cells were detected via Western blotting. Moreover, the expression level of miR-154 in myocardial cells of rats was detected via quantitative polymerase chain reaction (qPCR). Furthermore, the influence of miR-154 on Wnt/β-catenin signaling pathway was detected via Western blotting.

RESULTS: Compared with S group, left ventricular ejection fraction (LVEF, %) and left ventricular fractional shortening (LVFS, %) were significantly decreased in M group (p<0.01). However, left ventricular internal diameter at end-diastole (LVIDd) and left ventricular internal diameter at end-systole (LVIDs) were significantly increased (p<0.01). In I group, LVEF (%) and LVFS (%) were significantly higher than those of M group (p<0.05), whereas LVIDs and LVIDd were significantly lower (p<0.05). MI area in M group was remarkably larger than that of S group (p<0.01). Meanwhile, MI area in I group was significantly smaller than that of M group (p<0.01). Compared with S group, the number of apoptotic myocardial cells and the protein expression level of cleaved caspase-3 were significantly increased in M group (p<0.01). However, the expression level of B-cell lymphoma-2/Bcl-2 associated X protein (Bcl-2/Bax) was significantly decreased (p<0.01). The number of apoptotic myocardial cells and the protein expression level of cleaved caspase-3 were significantly declined in I group when compared with those of M group (p<0.01). However, the expression level of Bcl-2/Bax was significantly increased in I group (p<0.01). The expression level of miR-154 in myocardial cells of M group and I group was remarkably increased when compared with that of S group (p<0.01). Furthermore, the expression levels of β-catenin and Cyclin D1 in myocardial cells of M group were remarkably higher than those of S group and I group (p<0.01).

CONCLUSIONS: AMI significantly increases the expression level of miR-154. Moreover, miR-154 can activate Wnt/β-catenin signaling pathway, eventually promoting myocardial apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app