Add like
Add dislike
Add to saved papers

Soy extract and maltodextrin as microencapsulating agents for Lactobacillus acidophilus: a model approach.

The present study aimed to optimize the microencapsulation of Lactobacillus acidophilus La-05 by spray drying, using soy extract and maltodextrin as encapsulants. Air inlet temperature, maltodextrin/soy extract ratio and feed flow rate were investigated through Central Composite Rotational Design (CCRD). Probiotic viability increased with increasing the proportion of soy extract. Temperature and feed flow rate had a negative effect. Particle diameter ranged from 4.97 to 8.82 μm, water actvity from 0.25 to 0.52 and moisture from 2.30 to 7.01 g.100g-1 . Particles produced following the optimized conditions (air temperature of 87 °C, maltodextrin/soy extract ratio of 2: 3 w.w-1 , feed flow rate of 0.54 L.h-1 ) reached Encapsulation yield (EY) of 83%. Thermogravimetry and FTIR analysis suggested that microcapsules could protect L. acidophilus cells against dehydration and heating. During storage, microencapsulated probiotic had high cell viability (reductions ranged between 0.12 and 1.72 log cycles). Soy extract/maltodextrin presented good encapsulating properties of Lactobacillus acidophilus La-05.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app