Add like
Add dislike
Add to saved papers

Compound-specific 13 C SIP confirms synthesis of polyhydroxybutyrate by soil bacteria.

RATIONALE: Many bacteria synthesize carbon (C) and energy storage compounds, including water-insoluble polyester lipids composed mainly or entirely of poly(3-hydroxybutyrate) (PHB). Despite the potential significance of C and energy storage for microbial life and C cycling, few measurements of PHB in soil have been reported.

METHODS: A new protocol was implemented, based on an earlier sediment extraction and derivatization procedure, with quantification by gas chromatography-mass spectrometry (GC/MS) and 13 C isotopic analysis by GC-combustion-isotope ratio mass spectrometry (GC/C/IRMS).

RESULTS: The PHB content was 4.3 μg C g-1 in an agricultural soil and 1.2 μg C g-1 in a forest topsoil. This was an order of magnitude more PHB than obtained by the existing extraction method, suggesting that native PHB in soil has been previously underestimated. Addition of glucose increased the PHB content by 135% and 1,215% over five days, with the largest increase in the relatively nutrient-poor forest soil. In the agricultural soil, 68% of the increase was derived from added 13 C-labeled glucose, confirming synthesis of PHB from glucose for the first time in soil.

CONCLUSIONS: The presence and responsiveness of PHB in both these contrasting soils show that PHB could provide a useful indicator of bacterial nutritional status and unbalanced growth. Microbial storage could be important to C and nutrient cycling and be a widespread strategy in the life of soil bacteria. The presented method offers new insight into this compound's significance in soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app