Add like
Add dislike
Add to saved papers

Evaluating Dose- and Time-Dependent Effects of Vitamin C Treatment on a Parkinson's Disease Fly Model.

Parkinson's disease (PD) is a common neurodegenerative disorder and characterized by progressive locomotive defects and loss of dopaminergic neurons (DA neuron). Currently, there is no potent therapy to cure PD, and the medications merely support to control the symptoms. It is difficult to develop an effective treatment, since the PD onset mechanism of PD is still unclear. Oxidative stress is considered as a major cause of neurodegenerative diseases, and there is increasing evidence for the association between PD and oxidative stress. Therefore, antioxidant treatment may be a promising therapy for PD. Drosophila with knockdown of dUCH , a homolog of UCH-L1 which is a PD-related gene, exhibited PD-like phenotypes including progressive locomotive impairments and DA neuron degeneration. Moreover, knockdown of dUCH led to elevated level of ROS. Thus, dUCH knockdown flies can be used as a model for screening of potential antioxidants for treating PD. Previous studies demonstrated that curcumin at 1 mM and vitamin C at 0.5 mM could improve PD-like phenotypes induced by this knockdown. With the purpose of further investigating the efficiency of vitamin C in PD treatment, we used dUCH knockdown Drosophila model to examine the dose- and time-dependent effects of vitamin C on PD-like phenotypes. The results showed that although vitamin C exerted neuroprotective effects, high doses of vitamin C and long-term treatment with this antioxidant also resulted in side effects on physiology. It is suggested that dose-dependent effects of vitamin C should be considered when used for treating PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app