Add like
Add dislike
Add to saved papers

Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications.

Scientific Reports 2019 Februrary 5
Exhibiting a red-shifted absorption/scattering feature compared to conventional plasmonic metals, titanium nitride nanoparticles (TiN NPs) look as very promising candidates for biomedical applications, but these applications are still underexplored despite the presence of extensive data for conventional plasmonic counterparts. Here, we report the fabrication of ultrapure, size-tunable TiN NPs by methods of femtosecond laser ablation in liquids and their biological testing. We show that TiN NPs demonstrate strong and broad plasmonic peak around 640-700 nm with a significant tail over 800 nm even for small NPs sizes (<7 nm). In vitro tests of laser-synthesized TiN NPs on cellular models evidence their low cytotoxicity and excellent cell uptake. We finally demonstrate a strong photothermal therapy effect on U87-MG cancer cell cultures using TiN NPs as sensitizers of local hyperthermia under near-infrared laser excitation. Based on absorption band in the region of relative tissue transparency and acceptable biocompatibility, laser-synthesized TiN NPs promise the advancement of biomedical modalities employing plasmonic effects, including absorption/scattering contrast imaging, photothermal therapy, photoacoustic imaging and SERS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app