Add like
Add dislike
Add to saved papers

A novel peptide suppresses adipogenic differentiation through activation of the AMPK pathway.

Obesity rates have risen rapidly over the past several decades and obesity is now a global public health challenge. The reduction of excessive adipogenesis is thought to be an effective intervention for obesity and obesity-related metabolic diseases such as type 2 diabetes. In this study, a novel peptide PDBSN was identified that functions to suppress adipogenesis. In both human preadipocytes and mouse adipose-derived stem cells (ADSCs), PDBSN exhibited a suppressive effect on the accumulation of lipids and the expression of genes as well as their corresponding proteins (CCAAT/enhancer binding protein (C/EBP)β, C/EBPα and nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ)) relevant to adipogenic cell differentiation. Although adipogenesis decreased, the preadipocyte number and proliferation were not influenced by the PDBSN treatment. Apoptosis and the cell cycle were also determined to not have a role in the action of PDBSN. Mechanistically, the activity of the AMPK (adenosine 5'-monophosphate-activated protein kinase) pathway was markedly increased upon PDBSN treatment. Moreover, treatment of preadipocytes with compound C, a selective AMPK inhibitor, abolished the effect of PDBSN in anti-adipogenesis, suggesting that the function of PDBSN relied on the AMPK pathway. These results suggest an effective role for PDBSN in suppressing adipogenesis and show potential for anti-obesity drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app