Add like
Add dislike
Add to saved papers

Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum.

BMC Bioinformatics 2019 Februrary 5
BACKGROUND: In the current scenario, designing of world-wide effective malaria vaccine against Plasmodium falciparum remain challenging despite the significant progress has been made in last few decades. Conventional vaccinology (isolate, inactivate and inject) approaches are time consuming, laborious and expensive; therefore, the use of computational vaccinology tools are imperative, which can facilitate the design of new and promising vaccine candidates.

RESULTS: In current investigation, initially 5548 proteins of P. falciparum genome were carefully chosen for the incidence of signal peptide/ anchor using SignalP4.0 tool that resulted into 640 surface linked proteins (SLP). Out of these SLP, only 17 were predicted to contain GPI-anchors using PredGPI tool in which further 5 proteins were considered as malarial antigenic adhesins by MAAP and VaxiJen programs, respectively. In the subsequent step, T cell epitopes of 5 genome derived predicted antigenic adhesins (GDPAA) and 5 randomly selected known malarial adhesins (RSKMA) were analysed employing MHC class I and II tools of IEDB analysis resource. Finally, VaxiJen scored T cell epitopes from each antigen were considered for prediction of population coverage (PPC) analysis in the world-wide population including malaria endemic regions. The validation of the present in silico strategy was carried out by comparing the PPC of combined (MHC class I and II) predicted epitope ensemble among GDPAA (99.97%), RSKMA (99.90%) and experimentally known epitopes (EKE) of P. falciparum (97.72%) pertaining to world-wide human population.

CONCLUSIONS: The present study systematically screened 5 potential protective antigens from P. falciparum genome using bioinformatics tools. Interestingly, these GDPAA, RSKMA and EKE of P. falciparum epitope ensembles forecasted to contain highly promiscuous T cell epitopes, which are potentially effective for most of the world-wide human population with malaria endemic regions. Therefore, these epitope ensembles could be considered in near future for novel and significantly effective vaccine candidate against malaria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app