Add like
Add dislike
Add to saved papers

Amphiphilic Block Copolymer-Guided In-Situ Fabrication of Stable and Highly Controlled Luminescent Copper Nanoassemblies.

Assembling instable ultrasmall nanoparticles (NPs) into uniform nanoarchitectures with excellent stability and controllability in aqueous solution is still challenging. Herein, taking the advantage of controllable size and shape of amphiphilic triblock copolymer template, we report a facile and robust strategy for in-situ fabrication of highly luminescent Cu nanoassemblies with uniform morphology and remarkable stability. The dominant number of encapsulated CuNPs in an assembly can be controlled through regulating hydrophobic core size by varying block segments of the template. The cross-linking by a multi-dentate thiol ligand largely enhances the emission and stability of the Cu nanoassemblies in physiological environment. By virtue of their intriguing features, the Cu nanoassemblies can be applied to possible biomedical applications. These findings establish our approach as a facile and feasible method for preparing stable and well-controlled ultrasmall metal NP-based assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app