Add like
Add dislike
Add to saved papers

A Mechanical Sensor Using Hybridized Metamolecules.

Materials 2019 Februrary 4
Hybridized metamaterials with collective mode resonance are usually applied as sensors. In this paper, we make use of one Mie-based hybridized metamolecule comprising of dielectric meta-atoms and an elastic bonding layer in order to detect the distances and applied forces. The hybridization induced splitting results in two new collective resonance modes, of which the red-shifted mode behaves as the in-phase oscillation of two meta-atoms. Owing to the synergy of the oscillation, the in-phase resonance appears as a deep dip with a relatively high Q-factor and figure of merit (FoM). By exerting an external force, namely by adjusting the thickness of the bonding layer, the coupling strength of the metamolecule is changed. As the coupling strength increases, the first collective mode dip red-shifts increasingly toward lower frequencies. By fitting the relationship of the distance⁻frequency shift and the force⁻frequency shift, the metamolecule can be used as a sensor to characterize tiny displacement and a relatively wide range of applied force in civil engineering and biological engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app