Add like
Add dislike
Add to saved papers

Power Consumption Modeling of Discontinuous Reception for Cellular Machine Type Communications.

Sensors 2019 Februrary 2
Machine-type communication (MTC) is an emerging communication trend where intelligent machines are capable of communicating with each other without human intervention. Mobile cellular networks, with their wide range, high data rates, and continuously decreasing costs, offer a good infrastructure for implementing them. However, power consumption is a great issue, which has recently been addressed by 3GPP (3rd Generation Partnership Project) by defining power-saving mechanisms. In this paper, we address the problem of modeling these power-saving mechanisms. Currently existing modeling schemes do not consider the full range of states in the discontinuous reception (DRX) mechanism in LTE-A networks. We propose a semi-Markov based analytical model, which closes this gap and shows very good results in terms of predicting performance evaluation metrics, such as the power-saving factor and wake-up latency of MTC devices compared to simulation experiments. Furthermore, we offer an evaluation of the DRX parameters and their impact on power consumption of MTC devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app