Add like
Add dislike
Add to saved papers

Role of botulinum neurotoxin-A in cerebral revascularization graft vasospasm prevention: current state of knowledge.

Neurosurgical Focus 2019 Februrary 2
Graft stenosis and occlusion remain formidable complications in cerebral revascularization procedures, which can lead to significant morbidity and mortality. Graft vasospasm can result in early postoperative graft stenosis and occlusion and is believed to be at least partially mediated through adrenergic pathways. Despite various published treatment protocols, there is no single effective spasmolytic agent. Multiple factors, including anatomical and physiological variability in revascularization conduits, patient age, and comorbidities, have been associated with graft vasospasm pathogenesis and response to spasmolytics. The ideal spasmolytic agent thus likely needs to target multiple pathways to exert a generalizable therapeutic effect. Botulinum toxin (BTX)-A is a powerful neurotoxin widely used in clinical practice for the treatment of a variety of spastic conditions. Although its commonly described paradigm of cholinergic neural transmission blockade has been widely accepted, evidence for other mechanisms of action including inhibition of adrenergic transmission have been described in animal studies. Recently, the first pilot study demonstrating clinical use of BTX-A for cerebral revascularization graft spasm prevention has been reported. In this review, the mechanistic basis and potential future clinical role of BTX-A in graft vasospasm prevention is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app