Add like
Add dislike
Add to saved papers

Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite.

Environmental Research 2019 January 31
Because of numerous merits (e.g., the possibility of their synthesis in 1-D, 2-D, and 3-D forms, large surface-to-volume ratio, and flexible framework functionality), metal-organic frameworks (MOFs) are envisaged as excellent media for the development of biosensors for diverse analytes present in environmental media. The present research work, for the first time, reports the development of a Cu-MOF based electrochemical biosensor for highly sensitive detection of E. coli bacteria. In order to realize an MOF-based electrochemically active platform, Cu3 (BTC)2 (BTC = 1,3,5-benzenetricarboxylic acid) was mixed with polyaniline (PANI). The spectroscopic/morphological characterizations of the resulting composite were established with the aid of FT-IR, UV-visible spectroscopy, X-ray diffraction, electron microscopy, and surface area analysis. The thin films of Cu3 (BTC)2 -PANI, on an indium-tin oxide (ITO) substrate, were bio-interfaced with anti-E. coli antibodies for use as a novel biosensing electrode. Based on the electrochemical impedance spectroscopy (EIS) technique of signal measurement, the above sensor exhibited high sensitivity to detect very low concentrations of E. coli (2cfu/mL) in a short response time (~2 min) and was also selective in the presence of other non-specific bacteria. As a novel highlight of the research, this new MOF/PANI based detection platform for E. coli has shown improved performance than many of the previously reported electrochemical biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app