Add like
Add dislike
Add to saved papers

Novel miRNA expression in the delta opioid signaling pathway mediated cell survivability in an in vitro model of ER stress.

Micro RNAs (miRNAs) are small non-coding RNAs which bind to the 3'-untranslated region of a mature mRNA to induce degradation; thereby regulating gene expression. It is reported that dysregulated miRNAs involved in neurodegenerative diseases including Parkinson's disease, could play a significant role as prognostic markers and therapeutic targets. Neuroprotective effect of delta opioid receptors (DOR) and its known miRNA regulation against endoplasmic reticulum (ER) stress have been reported previously by our lab. Current study focuses on understanding the regulation of novel miRNAs by DOR under ER stress. Novel miRNAs were identified for three different samples; control, tunicamycin (ER stress inducer), and tunicamycin+DADLE (DOR agonist). Differentially regulated miRNAs between the different samples were identified and pathway/target genes analysis was carried out. The results suggest that following DOR activation novel miRNAs like xxx-m0073-3p, xxx-m0225-3p, xxx-m0088-3p, xxx-m0098-5p etc could regulate cell survival mechanisms in neuronal cells (SH-SY5Y) under ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app