JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins.

Energy homeostasis in mitochondria is vital for proper muscle cell function. In this review we will focus on cardiac and skeletal muscle energy-dissipating systems, i.e., mitochondrial potassium channels and uncoupling proteins. Despite the molecular differences between these proteins both of them may regulate the generation of reactive oxygen species. Hence, they can both modulate pro-life and -death signaling in response to the needs of the muscle cell. Certain mitochondrial potassium channels (such as the ATP-regulated and large conductance calcium-activated mitochondrial potassium channels) and uncoupling proteins may be regulated in a similar manner suggesting that both are part of the energy-dissipating hub in muscle mitochondria. Understanding the role of these proteins, especially in the context of ischemia-reperfusion injury of cardiac muscle, may be important for pharmacological intervention. This review highlights several aspects of the regulation of mitochondrial potassium channels and uncoupling proteins in muscle mitochondria and their association with diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app