Add like
Add dislike
Add to saved papers

SnS 2 Nanosheets/H-TiO 2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting.

ChemSusChem 2019 January 15
Improving the separation efficiency of photogenerated electron-hole pairs and the conductivity of electrons to photoanode substrates are critical to achieve high-performance photoelectrochemical (PEC) water splitting. Here, a SnS2 /H-TiO2 /Ti heterojunction photoanode was fabricated with SnS2 nanosheets vertically grown on hydrogen-treated TiO2 (H-TiO2 ) nanotube arrays on a Ti substrate. It showed a significantly enhanced photocurrent of 4.0 mA cm-2 at 1.4 V (vs. reversible hydrogen electrode) under AM 1.5 G illumination, 70 times higher than that of SnS2 /TiO2 /Ti. Kelvin probe force microscopy measurements indicated that photogenerated electrons could be easily transported through the SnS2 /H-TiO2 interface but not through the SnS2 /TiO2 interface. Through hydrogen treatment, defects were created in H-TiO2 nanotubes to convert type I junctions to type II with SnS2 nanosheets. As a result, a high efficiency of electron-hole separation at the SnS2 /H-TiO2 interface and a high electron conductivity in H-TiO2 nanotubes were achieved and improved PEC performance. These findings show an effective route towards high-performance photoelectrodes for water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app