Add like
Add dislike
Add to saved papers

Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride.

ACS Nano 2019 Februrary 5
Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a wide spread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: ~100-200 per 10×10 μm2. More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on 2D materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app