Add like
Add dislike
Add to saved papers

Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance.

ACS Nano 2019 Februrary 27
Insulin resistance is the major pathological characteristic of type 2 diabetes, and the elderly often develop insulin resistance. However, the deep-seated mechanisms for aging-related insulin resistance remain unclear. Here, we showed that nanosized exosomes released by bone marrow mesenchymal stem cells (BM-MSCs) of aged mice could be taken up by adipocytes, myocytes, and hepatocytes, resulting in insulin resistance both in vivo and in vitro. Using microRNA (miRNA) array assays, we found that the amount of miR-29b-3p was dramatically increased in exosomes released by BM-MSCs of aged mice. Mechanistically, SIRT1 (sirtuin 1) was identified to function as the downstream target of exosomal miR-29b-3p in regulating insulin resistance. Notably, utilizing an aptamer-mediated nanocomplex delivery system that down-regulated the level of miR-29b-3p in BM-MSCs-derived exosomes significantly ameliorated the insulin resistance of aged mice. Meanwhile, BM-MSCs-specific overexpression of miR-29b-3p induced insulin resistance in young mice. Taken together, these findings suggested that BM-MSCs-derived exosomal miR-29b-3p could modulate aging-related insulin resistance, which may serve as a potential therapeutic target for aging-associated insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app