Add like
Add dislike
Add to saved papers

TAK733 attenuates adrenergic receptor-mediated cardiomyocyte hypertrophy via inhibiting ErkThr188 phosphorylation.

BACKGROUND: Cardiac hypertrophy is an important risk factor for heart failure. The MEK-ERK axis has been reported as a major regulator in controlling cardiac hypertrophy. TAK733 is a potent and selective MEK inhibitor that suppresses cell growth in a broad range of cell lines.

OBJECTIVE: Therefore, we aimed to investigate the anti-hypertrophic effect of TAK733 in cardiomyocytes.

METHODS: Cardiomyocyte hypertrophy was induced with norepinephrine (NE) or phenylepinephrine (PE) using H9c2 cells. To confirm the cardiomyocyte hypertrophy, cell size and protein synthesis were measured and hypertrophy-related gene expression was estimated by reverse transcription polymerase chain reaction. To identify the signaling pathway involved, immunoblot analysis were performed.

RESULTS: We observed that NE activated MEK-ERK signaling and increased ANP and BNP expression, resulting in cardiomyocyte hypertrophy. TAK733 significantly reduced cardiomyocyte hypertrophy by regulating NE-induced ERK1/2 and ERKThr188 activation, hypertrophy marker expression, and cardiomyocyte hypertrophy through depression of MEK activity. In addition, we examined that PE-induced cardiomyocyte hypertrophy was also attenuated by TAK733.

CONCLUSIONS: Here, we report that TAK733 suppressed NE- or PE-induced cardiomyocyte hypertrophy by repressing a crucial component of cardiac hypertrophy-related pathways. These results suggest that TAK733 may be a useful therapeutics for cardiac hypertrophy and warrants further in vivo studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app