Add like
Add dislike
Add to saved papers

VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes.

Volumetric representation has been widely used for 3D deep learning in shape analysis due to its generalization ability and regular data format. However, for fine-grained tasks like part segmentation, volumetric data has not been widely adopted compared to other representations. Aiming at delivering an effective volumetric method for 3D shape part segmentation, this paper proposes a novel volumetric convolutional neural network. Our method can extract discriminative features encoding detailed information from voxelized 3D data under limited resolution. To this purpose, a spatial dense extraction (SDE) module is designed to preserve spatial resolution during feature extraction procedure, alleviating the loss of details caused by sub-sampling operations such as max pooling. An attention feature aggregation (AFA) module is also introduced to adaptively select informative features from different abstraction levels, leading to segmentation with both semantic consistency and high accuracy of details. Experimental results demonstrate that promising results can be achieved by using volumetric data, with part segmentation accuracy comparable or superior to state-of-the-art non-volumetric methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app