Add like
Add dislike
Add to saved papers

Online Subspace Learning from Gradient Orientations for Robust Image Alignment.

Robust and efficient image alignment remains a challenging task, due to the massiveness of images, great illumination variations between images, partial occlusion and corruption. To address these challenges, we propose an online image alignment method via subspace learning from image gradient orientations (IGO). The proposed method integrates the subspace learning, transformed IGO reconstruction and image alignment into a unified online framework, which is robust for aligning images with severe intensity distortions. Our method is motivated by principal component analysis (PCA) from gradient orientations provides more reliable low-dimensional subspace than that from pixel intensities. Instead of processing in the intensity domain like conventional methods, we seek alignment in the IGO domain such that the aligned IGO of the newly arrived image can be decomposed as the sum of a sparse error and a linear composition of the IGO-PCA basis learned from previously well-aligned ones. The optimization problem is tackled by an iterative linearization that minimizes the ℓ1-norm of the sparse error. Furthermore, the IGO-PCA basis is adaptively updated based on incremental thin singular value decomposition (SVD) which takes the shift of IGO mean into consideration. The efficacy of the proposed method is validated on extensive challenging datasets through image alignment, medical atlas construction and face recognition. Experimental results demonstrate that our algorithm provides more illumination- and occlusion-robust image alignment than state-of-the-art methods do.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app