Add like
Add dislike
Add to saved papers

Causes and consequences of microRNA dysregulation following cerebral ischemia-reperfusion injury.

Stroke continues to be a major cause of death and disability worldwide. In this respect, the most important mechanisms underlying stroke pathophysiology are inflammatory pathways, oxidative stress, as well as apoptosis. Accordingly, miRNAs are considered as non-coding endogenous RNA molecules interacting with their target mRNAs to inhibit mRNA translation or reduce its transcription. Studies in this domain have similarly shown that miRNAs are strongly associated with coronary artery disease and correspondingly contribute to the brain ischemia molecular processes. To retrieve articles related to the study subject, i.e. the role of miRNAs involved in inflammatory pathways, oxidative stress, and apoptosis in stroke from the databases of Web of Science, PubMed (NLM), Open Access Journals, LISTA (EBSCO), and Google Scholar; keywords including cerebral ischemia, microRNA (miRNA), inflammatory pathway, oxidative stress, along with apoptosis were used. It was consequently inferred that, miRNAs could be employed as potential biomarkers for diagnosis and prognosis, as well as therapeutic goals of cerebral ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app