Add like
Add dislike
Add to saved papers

Structural and Biomechanical Adaptations of Right Ventricular Remodeling - in Pulmonary Arterial Hypertension - Reduces Left Ventricular Rotation During Contraction: A Computational Study.

Pulmonary hypertension (PH) is a degenerative disease characterized by progressively increased right ventricular (RV) afterload that leads to ultimate functional decline [1]. Recent observational studies have documented a decrease in left ventricular (LV) torsion during ejection, with preserved LV ejection fraction (EF) in pediatric and adult PH patients [2-4]. The objective of this study was to develop a computational model of the bi-ventricular heart and use it to evaluate changes in LV torsion mechanics in response to mechanical, structural, and hemodynamic changes in the RV free-wall. The heart model revealed that LV apex rotation and torsion were decreased when increasing RV mechanical rigidity and during re-orientation of RV myocardial fibers. Furthermore, structural changes to the RV appear to have a notable impact on RV EF, but little influence on LV EF. Finally, RV pressure overload exponentially increased LV myocardial stress. The computational results found in this study are consistent with clinical observations in adult and pediatric PH patients, which reveal a decrease in LV torsion with preserved LV EF [3, 4]. Furthermore, discovered causes of decreased LV torsion are consistent with RV structural adaptations seen in PH rodent studies [5], which might also explain suspected stress-induced changes in LV myocardial gene/protein expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app