Add like
Add dislike
Add to saved papers

Structure model of γ-Al 2 O 3 based on planar defects.

IUCrJ 2019 January 2
The defect structure of γ-Al2 O3 derived from boehmite was investigated using a combination of selected-area electron diffraction (SAED) and powder X-ray diffraction (XRD). Both methods confirmed a strong dependence of the diffraction line broadening on the diffraction indices known from literature. The analysis of the SAED patterns revealed that the dominant structure defects in the spinel-type γ-Al2 O3 are antiphase boundaries located on the lattice planes , which produce the sublattice shifts . Quantitative information about the defect structure of γ-Al2 O3 was obtained from the powder XRD patterns. This includes mainly the size of γ-Al2 O3 crystallites and the density of planar defects. The correlation between the density of the planar defects and the presence of structural vacancies, which maintain the stoichiometry of the spinel-type γ-Al2 O3 , is discussed. A computer routine running on a fast graphical processing unit was written for simulation of the XRD patterns. This routine calculates the atomic positions for a given kind and density of planar defect, and simulates the diffracted intensities with the aid of the Debye scattering equation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app