Add like
Add dislike
Add to saved papers

Inverted (p-i-n) perovskite solar cells using a low temperature processed TiO x interlayer.

RSC Advances 2018 July 11
In this article, we present the improvement in device performance and stability as well as reduction in hysteresis of inverted mixed-cation-mixed-halide perovskite solar cells (PSCs) using a low temperature, solution processed titanium oxide (TiO x ) interlayer between [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and an Al electrode. Upon applying a TiO x interlayer, device resistance was reduced compared to that of the control devices, which results in improved rectification of the characteristic current density-voltage ( J - V ) curve and improved overall performance of the device. PSCs with the TiO x interlayer show an open-circuit voltage ( V oc ) of around 1.1 V, current density ( J sc ) of around 21 mA cm-2 , fill factor (FF) of around 72% and enhanced power conversion efficiency (PCE) of 16% under AM1.5 solar spectrum. Moreover, devices with the TiO x interlayer show improved stability compared to devices without the TiO x interlayer. This finding reveals the dual role of the TiO x interlayer in improving device performance and stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app