Add like
Add dislike
Add to saved papers

MiR-187-3p Enhances Propranolol Sensitivity of Hemangioma Stem Cells.

Infantile hemangioma is the most common soft tissue tumors in childhood. In clinic, propranolol is widely used for infantile hemangioma therapy. However, some of the infantile hemangioma patients display resistance to propranolol treatment. Previous studies show that miR-187-3p is inhibited in hepatocellular carcinoma and lung cancer, while the role of miR-187-3p in infantile hemangioma remains unclear. In the present study, we explore the biological role of miR-187-3p in infantile hemangioma. The mRNA and protein levels of related genes were detected by real-time PCR and Western blotting. CCK8 assay was used to detect cell viability and IC50 values of propranolol. Cell apoptosis was detected by Caspase-3 Activity assay. Luciferase reporter assay and biotin RNA pull down assay were used to detect the interaction between miR-187-3p and the targeted gene. MiR-187-3p was down-regulated in infantile hemangioma tissues and promoted propranolol sensitivity of HemSCs. Mechanically, NIPBL was the direct target of miR-187-3p in HemSCs. NIPBL downregulation inhibited propranolol resistance of HemSCs. Re-introduction of NIPBL reversed miR-187-3p-meidated higher propranolol sensitivity of HemSCs. MiR-187-3p enhanced propranolol sensitivity of hemangioma stem cells via targeting NIPBL. MiR-187-3p may serve as a novel prognostic indicator and potential target for infantile hemangioma therapy. Key words: MiR-187-3p, infantile hemangioma, propranolol, resistance, NIPBL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app