Add like
Add dislike
Add to saved papers

The Angiotensin II type 1 receptor mediates the effects of low oxygen on early placental angiogenesis.

Placenta 2019 January
INTRODUCTION: Placental development occurs in a low oxygen environment, which stimulates angiogenesis by upregulating vascular endothelial growth factor A (VEGFA), plasminogen activator inhibitor-1 (SERPINE1) and the angiopoietin-2/-1 ratio (ANGPT2/1). At this time, Angiotensin II type 1 receptor (AT1 R) is highly expressed. We postulated that the early gestation placental oxygen milieu, by stimulating the angiotensin (Ang) II/AT1 R pathway, increases expression of proliferative/angiogenic factors.

METHODS: HTR-8/SVneo cells were cultured in 1%, 5% or 20% O2 with the AT1 R antagonist (losartan) for 48 h. mRNA and protein levels of angiogenic factors were determined by qPCR and ELISA. Angiogenesis and cell viability were assessed by HUVEC tube formation and resazurin assay.

RESULTS: Culture in low oxygen (1%) increased angiogenic VEGFA, SERPINE1 and placental growth factor (PGF) mRNA and VEGFA and SERPINE1 protein levels, and reduced anti-angiogenic ANGPT1, endoglin (ENG) and soluble fms-like tyrosine kinase-e15a (sFlt-e15a) mRNA (all P = 0.0001). At 1% oxygen, losartan significantly reduced intracellular VEGFA and SERPINE1 levels and secreted VEGF levels (P = 0.008, 0.0001 and 0.0001). HUVEC tube formation was increased in cells grown in HTR-8/SVneo conditioned medium from 1 to 5% cultures (all P = 0.0001). HUVECs cultured in medium from losartan treated HTR-8/SVneo cells had a reduced number of meshes, branching points and total branching length (P = 0.004, 0.003 and 0.0002). At 1% oxygen, losartan partially inhibited the oxygen-induced increase in cell viability (P = 0.0001).

DISCUSSION: Thus, AT1 R blockade antagonised the low oxygen induced increase in pro-angiogenic factor expression and cell viability. Our findings highlight a role for an oxygen-sensitive Ang II/AT1 R pathway during placentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app