Add like
Add dislike
Add to saved papers

Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats.

With aging, there is a reduction in mitochondrial activity, and several changes occur in the body composition, including increased adiposity. The dysfunction of mitochondrial activity causes changes and adaptations in tissue catabolic characteristics. Among them, we can mention brown adipose tissue (BAT). BAT's main function is lipid oxidation for heat production, hence playing a role in adaptive thermogenesis induced by environmental factors such as exercise. It is known that exercise causes a series of metabolic changes, including loss body fat; however, there is still no consensus in the academic community about whether both strength and aerobic exercise equally reduces adiposity. Therefore, this study aimed to evaluate the effects of strength training and aerobic exercise regimes on adiposity, proteins regulating mitochondrial activity, and respiratory complexes in BAT of old rats. The rats were divided in two control groups: young control (YC; N = 5), and old control (OC; N = 5), and two exercise groups: strength training (OST; N = 5), and aerobic treadmill training (OAT; N = 5). Rats were subjected to an 8-week exercise regime, and their body composition parameters were evaluated (total body weight, adiposity index, and BAT weight). In addition, mitochondrial biogenesis proteins (PGC-1α, SIRT1, and pAMPK) and respiratory chain activity (complexes I, II/III, III, and IV) were evaluated. Results showed that OST and OAT exercise protocols significantly increased the mitochondrial regulatory molecules and respiratory chain activity, while body fat percentage and adiposity index significantly decreased. Taken together, both OST and OAT exercise increased BAT weight, activity of respiratory complexes, and regulatory proteins in BAT and equally reduced body adiposity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app