Add like
Add dislike
Add to saved papers

A possible biomarker of neurocytolysis in infantile gangliosidoses: aspartate transaminase.

Gangliosidoses (GM1 and GM2 gangliosidosis) are rare, autosomal recessive progressive neurodegenerative lysosomal storage disorders caused by defects in the degradation of glycosphingolipids. We aimed to investigate clinical, biochemical and molecular genetic spectrum of Turkish patients with infantile gangliosidoses and examined the potential role of serum aspartate transaminase levels as a biomarker. We confirmed the diagnosis of GM1 and GM2 gangliosidosis based on clinical findings with specific enzyme and/or molecular analyses. We retrospectively reviewed serum aspartate transaminase levels of patients with other biochemical parameters. Serum aspartate transaminase level was elevated in all GM1 and GM2 gangliosidosis patients in whom the test was performed, along with normal alanine transaminase. Aspartate transaminase can be a biochemical diagnostic clue for infantile gangliosidoses. It might be a simple but important biomarker for diagnosis, follow up, prognosis and monitoring of the response for the future therapies in these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app