Add like
Add dislike
Add to saved papers

Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage.

OBJECTIVE: During osteoarthritis, chondrocytes seem to change their spatial arrangement from single to double strings, small and big clusters. Since the pericellular matrix (PCM) appears to degrade alongside this reorganisation, it has been suggested that spatial patterns act as an image-based biomarker for osteoarthritis. The aim of this study was to establish the functional relevance of spatial organisation in articular cartilage.

METHOD: Cartilage samples were selected according to their predominant spatial cellular pattern. Young's modulus of their PCM was measured by atomic force microscopy (AFM) (∼500 measurements/pattern). The distribution of two major PCM components (collagen type VI and perlecan) was analysed by immunohistochemistry (8 patients) and protein content quantified by enzyme-linked immunosorbent assay (ELISA) (58 patients).

RESULTS: PCM stiffness significantly decreased with the development from single to double strings (p=0.030), from double strings to small clusters (p=0.015), and from small clusters to big clusters (p<0.001). At the same time, the initially compact collagen type VI and perlecan staining progressively weakened and was less focalised. The earliest point with a significant reduction in protein content as shown by ELISA was the transition from single strings to small clusters for collagen type VI (p=0.016) and from double strings to small clusters for perlecan (p=0.008), with the lowest amounts for both proteins seen in big clusters.

CONCLUSIONS: This study demonstrates the functional relevance of spatial chondrocyte organisation as an image-based biomarker. At the transition from single to double strings PCM stiffness decreases, followed by protein degradation from double strings to small clusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app