Add like
Add dislike
Add to saved papers

Early growth response 1 transcriptionally primes the human endometrial stromal cell for decidualization.

Mouse studies support a role for endometrial early growth response 1 (EGR1) in uterine receptivity and decidualization, which are processes controlled by estrogen and progesterone. However, the importance of this transcription factor in similar cellular processes in human is unclear. Analysis of clinical samples indicate that endometrial EGR1 levels are decreased in the endometrium of women with recurrent implantation failure, suggesting tight control of EGR1 levels are necessary for normal endometrial function. Therefore, we used siRNA-mediated knockdown of EGR1 expression in cultured human endometrial stromal cells (hESCs) to assess the functional role of EGR1 in hESC decidualization. Protein expression studies revealed that EGR1 is highly expressed in pre-decidual hESCs. However, EGR1 protein levels rapidly decrease following administration of an established deciduogenic hormone stimulus containing estradiol, medroxyprogesterone acetate, and cyclic adenosine monophosphate. Intriguingly, EGR1 knockdown in pre-decidual hESCs blocks the ability of these cells to decidualize later, indicating that EGR1 is required to transcriptionally program pre-decidual hESCs for decidualization. Support for this proposal comes from the analysis of transcriptome and cistrome datasets, which shows that EGR1 target genes are primarily involved in transcriptional regulation, cell signaling, and proliferation. Collectively, our studies provide translational support for an evolutionary conserved role for human endometrial stromal EGR1 in the early events of pregnancy establishment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app