Add like
Add dislike
Add to saved papers

Parametric direction-of-arrival estimation with three recurrence relations of spherical harmonics.

The eigenbeam estimation of signal parameters via the rotational invariance technique (EB-ESPRIT) is a well-known subspace-based beamforming algorithm for a spherical microphone array. EB-ESPRIT uses a recurrence relation to directly estimate directional parameters expressing directions-of-arrival (DOAs) of sound sources without an exhaustive grid-search. In the conventional EB-ESPRIT, the directional parameter along the elevational direction is given by a tangent function, which inevitably produces two shortcomings. First, the tangent function becomes singular for sources near the equator in spherical coordinates. Furthermore, two sources lying in exactly opposite directions in the spherical coordinates are indistinguishable and a strong ambiguity problem arises. In this work, an EB-ESPRIT technique based on generalized eigenvalue decomposition (GEVD) is proposed to resolve the singularity and ambiguity problems. The proposed technique uses three independent recurrence relations for spherical harmonics, thus the singularity problem due to the tangent function can be completely avoided. A common transformation matrix for extracting DOAs from recurrence relations are found from the GEVD, and the use of cosine and sine functions makes it possible to find DOAs without ambiguity and without extra transforms or angle-pairing processes. It is demonstrated that the proposed method not only overcomes the singularity and ambiguity problems, but also outperforms conventional techniques in terms of DOA accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app