Add like
Add dislike
Add to saved papers

Time-domain simulation of ultrasound propagation with fractional Laplacians for lossy-medium biological tissues with complicated geometries.

Simulations of ultrasound wave propagation inside biological tissues have a wide range of practical applications. In previous studies, wave propagation equations in lossy biological media are solved either with convolutions, which consume a large amount of memory, or with pseudo-spectral methods, which cannot handle complicated geometries effectively. The approach described in the paper employed a fractional central difference method (FCD), combined with the immersed boundary (IB) method for the finite-difference, time-domain simulation. The FCD method can solve the fractional Laplace terms in Chen and Holm's lossy-medium equations directly in the physical domain without integral transforms. It also works naturally with the IB method, which enables a simple Cartesian-type grid mesh to be used to solve problems with complicated geometries. The numerical results agree very well with the analytical solutions for frequency power-law attenuation lossy media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app